Global eigenvalue distribution of matrices defined by the skew-shift
نویسندگان
چکیده
We consider large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of skew-shift $\binom{j}{2} \omega+jy+x \mod 1$ for irrational $\omega$. prove that eigenvalue distribution these converges to corresponding from random matrix theory on global scale, namely, Wigner semicircle law square and Marchenko-Pastur rectangular matrices. The results evidence quasi-random nature dynamics which was observed in other contexts Bourgain-Goldstein-Schlag Rudnick-Sarnak-Zaharescu.
منابع مشابه
Large Random Matrices: Eigenvalue Distribution
A recursive method is derived to calculate all eigenvalue correlation functions of a random hermitian matrix in the large size limit, and after smoothing of the short scale oscillations. The property that the two-point function is universal, is recovered and the three and four-point functions are given explicitly. One observes that higher order correlation functions are linear combinations of u...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملAsymptotic eigenvalue distribution of large Toeplitz matrices
We study the asymptotic eigenvalue distribution of Toeplitz matrices generated by a singular symbol. It has been conjectured by Widom that, for a generic symbol, the eigenvalues converge to the image of the symbol. In this paper we ask how the eigenvalues converge to the image. For a given Toeplitz matrix Tn(a) of size n, we take the standard approach of looking at det(ζ − Tn(a)), of which the ...
متن کاملOrthogonal Polynomials on the Unit Circle with Verblunsky Coefficients Defined by the Skew-shift
I give an example of a family of orthogonal polynomials on the unit circle with Verblunsky coefficients given by the skew-shift for which the associated measures are supported on the entire unit circle and almost-every Aleksandrov measure is pure point. Furthermore, I show in the case of the two dimensional skew-shift the zeros of para-orthogonal polynomials obey the same statistics as an appro...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis & PDE
سال: 2021
ISSN: ['2157-5045', '1948-206X']
DOI: https://doi.org/10.2140/apde.2021.14.1153